解:(1)设. ∵.. ∴. ∴. ∵. ∴. ∴. 即. ∴或 ∴或 (2)∵. ∴. ∴. 即. 又∵.. ∴. ∴. ∵.. ∴. ∵. ∴. 查看更多

 

题目列表(包括答案和解析)

设a,b,c分别是△ABC的三个角A,B,C所对的边,研究A=2B是a2=b(b+c)的什么条件?以下是某同学的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB⇒a=2bcosB
⇒a=2b•
a2+c2-b2
2ac
.变形得a2c=a2b+bc2-b3⇒a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分条件.
请你研究这位同学解法的正误,并结合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的(  )条件.

查看答案和解析>>

设a,b,c分别是△ABC的三个角A,B,C所对的边,研究A=2B是a2=b(b+c)的什么条件?以下是某同学的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•
a2+c2-b2
2ac
.变形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分条件.
请你研究这位同学解法的正误,并结合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.非充分非必要

查看答案和解析>>

设F1,F2分别是双曲线=1的两个焦点,点P到焦点F1的距离等于16.5,求点P到焦点F2的距离.

对于此变式,下列解法正确吗?为什么?

解:双曲线=1的实轴长为16,

由||PF2|-|PF1||=16,即||PF2|-16.5|=16,

解得|PF2|=0.5或32.5.

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

已知抛物线,过M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,

    (1)求a的取值范围;

    (2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

    分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值。

查看答案和解析>>


同步练习册答案