23.如图①.P是△ABC边AC上的动点.以P为顶点作矩形PDEF.顶点D,E在边BC上.顶点F在边AB上,△ABC的底边BC及BC上的高的长分别为a , h,且是关于x的一元二次方程的两个实数根.设过D, E,F三点的⊙O的面积为,矩形PDEF的面积为. (1)求证:以a+h为边长的正方形面积与以a.h为边长的矩形面积之比不小于4, (2)求的最小值, (3)当的值最小时.过点A作BC的平行线交直线BP与Q.这时线段AQ的长与m , n , k的取值是否有关?请说明理由. 查看更多

 

题目列表(包括答案和解析)

26、如图①,在6×12的方格纸MNEF中,每个小正方形的边长都是1.Rt△ABC的顶点C与N重合,两直角边AC、BC分别在MN、NE上,且AC=3,BC=2.现Rt△ABC以每秒1个单位长的速度向右平移,当点B移动至点E时,Rt△ABC停止移动.

(1)请你在答题卡所附的6×12的方格纸①中,画出Rt△ABC向右平移4秒时所在的图形;
(2)如图②,甲说,在Rt△ABC向右平移的过程中,△ABF的面积是始终不变;乙说,△ABF的面积越来越大.你认为他们说的,谁对,并说出你判断的理由.
(3)如图②,在Rt△ABC向右平移的过程中,△ABF能否成为直角三角形?如果能,请求出相应的时间t;如果不能,请简要说明理由.

查看答案和解析>>

精英家教网如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

查看答案和解析>>

精英家教网如图,在△ABC中,∠C=90°,AC=6,tanB=
34
,D是BC边的中点,E为AB边上的一个动点,作∠DEF=90°,EF交射线BC于点F.设BE=x,△BED的面积为y.
(1)求y关于x的函数关系式,并写出自变量x的取值范围;
(2)如果以线段BC为直径的圆与以线段AE为直径的圆相切,求线段BE的长;
(3)如果以B、E、F为顶点的三角形与△BED相似,求△BED的面积.

查看答案和解析>>

如图,已知△ABC中∠A=60°,AB=2cm,AC=6cm,点P、Q分别是边AB、AC上的动点,点P从顶点A沿AB以1cm/s的速度向点B运动,同时点Q从顶点C沿CA以3cm/s的速度向点A运动,当点P到达点B时点P、Q都停止运动.设运动的时间为t秒.
(1)当t为何值时AP=AQ;
(2)是否存在某一时刻使得△APQ是直角三角形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系内,Rt△ABC的直角顶点C(0,数学公式)在y轴的正半轴上,A、B是x轴上是两点,且OA:OB=3:1,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.
(1)求过A、B、C三点的抛物线的解析式;
(2)请猜想:直线EF与两圆有怎样的位置关系并证明你的猜想;
(3)在△AOC中,设点M是AC边上的一个动点,过M作MN∥AB交OC于点N.试问:在x轴上是否存在点P,使得△PMN是一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案