3.整数集 Z 查看更多

 

题目列表(包括答案和解析)

12、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];
②-3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中,正确结论的个数是(  )

查看答案和解析>>

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];   
②-3∈[3];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.
其中,正确结论的是
①③④
①③④

查看答案和解析>>

在整数集Z中,被4除所得余数k的所有整数组成一个“类”,记为[k],即[k]={4n+k|n∈Z},K=0,1,2,3.给出如下四个结论:①2013∈[1];    ②-2∈[2];    ③Z=[0]∪[1]∪[2]∪[3];    ④若“整数a,b属于同一‘类’”,则“a-b∈[0]”.
其中正确的个数为
4
4

查看答案和解析>>

在整数集Z中,称被5除所得的余数为k的所有整数组成一个“k类”,记为[k],即[k]={x|x=5n+k,n∈Z},k=0,1,2,3,4.现给出如下四个结论:
①2011∈[1];
②-4∈[4];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④设a,b∈Z,则a,b∈[k]?a-b∈[0].
其中,正确结论的序号是
①③④
①③④

查看答案和解析>>

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2013∈[3];         
②-2∈[2];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中,正确结论的个数为
3
3

查看答案和解析>>


同步练习册答案