26. (1)观察发现 如题26(a)图.若点A.B在直线同侧.在直线上找一点P.使AP+BP的值最小. 做法如下:作点B关于直线的对称点.连接.与直线的交点就是所求的点P 再如题26(b)图.在等边三角形ABC中.AB=2.点E是AB的中点.AD是高.在AD上找一点P.使BP+PE的值最小. 做法如下:作点B关于AD的对称点.恰好与点C重合.连接CE交AD于一点.则这 点就是所求的点P.故BP+PE的最小值为 . 题26(a)图 题26(b)图 (2)实践运用 如题26(c)图.已知⊙O的直径CD为4.AD的度数为60°.点B是的中点.在直径CD上找一点P.使BP+AP的值最小.并求BP+AP的最小值. 题26(c)图 题26(d)图 (3)拓展延伸 如题26(d)图.在四边形ABCD的对角线AC上找一点P.使∠APB=∠APD.保留 作图痕迹.不必写出作法. 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)
如图,在平面直角坐标系中,直线L:y=-2x-8分别与x轴、y轴相交于A、B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P。

(1)连结PA,若PA=PB,试判断⊙P与X轴的位置关系,并说明理由;
(2)当K为何值时,以⊙P与直线L的两个交点和圆心P为顶点的三角形是正三角形?

查看答案和解析>>

(本小题满分10分)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个.若从中任意摸出一个球,这个球是白球的概率为
(1)求口袋中红球的个数;
(2)把口袋中的球搅匀后摸出一个球,放回搅匀再摸出第二个球,求摸到的两个球是一红一白的概率.(请结合树状图或列表加以解答)

查看答案和解析>>

(本小题满分10分)如图,在平面直角坐标系中,点A、B、C、P的坐标分别为(0,1)、(-1,0)、(1,0)、(-1,-1)。

【小题1】(1)求经过A、B、C三点的抛物线的表达式;
【小题2】(2)以P为位似中心,将△ABC放大,使得放大后的△A1B1C1
与△OAB对应线段的比为3:1,请在右图网格中画出放大
后的△A1B1C1;(所画△A1B1C1与△ABC在点P同侧);
【小题3】(3)经过A1、B1、C1三点的抛物线能否由(1)中的抛物线平
移得到?请说明理由。

查看答案和解析>>

(本小题满分10分)如图,在等腰梯形ABCD中,ADBCAB=DC=5,AD=6,BC=12.动点PD点出发沿DC以每秒1个单位的速度向终点C运动,动点QC点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.

【小题1】(1)求梯形ABCD的面积;
【小题2】(2)当P点离开D点几秒后,PQ//AB
【小题3】(3)当PQC三点构成直角三角形时,求点P从点D运动的时间?

查看答案和解析>>

(本小题满分10分)
在图1至图3中,直线MN与线段AB相交
于点O,∠1 = ∠2 = 45°.

【小题1】(1)如图1,若AO OB,请写出AOBD
的数量关系和位置关系;
【小题2】(2)将图1中的MN绕点O顺时针旋转得到
图2,其中AO = OB
求证:AC BDAC ⊥ BD
【小题3】(3)将图2中的OB拉长为AOk倍得到
图3,求的值.

查看答案和解析>>


同步练习册答案