22.如图.抛物线y=ax2+bx+c经过点A(4.0).B(2.2).连结OB.AB. (1)求该抛物线的解析式, (2)求证:△OAB是等腰直角三角形, (3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′.写出A′B′的中点P的坐标.试判断点P是否在此抛物线上.并说明理由. 查看更多

 

题目列表(包括答案和解析)

(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A(-1,0)、B (3,

0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.

(1)求该抛物线的解析式;

(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;

若不存在,说明理由;

(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相

等,若存在,直接写出点R的坐标;若不存在,说明理由.

 

查看答案和解析>>

(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A(-1,0)、B (3,

0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.

(1)求该抛物线的解析式;

(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;

若不存在,说明理由;

(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相

等,若存在,直接写出点R的坐标;若不存在,说明理由.

 

查看答案和解析>>

(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A (-1,0)、B (3,
0)、C (0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;
若不存在,说明理由;
(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相
等,若存在,直接写出点R的坐标;若不存在,说明理由.

查看答案和解析>>

(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A (-1,0)、B (3,
0)、C (0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;
若不存在,说明理由;
(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相
等,若存在,直接写出点R的坐标;若不存在,说明理由.

查看答案和解析>>

(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A (-1,0)、B (3,

0)、C (0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.

(1)求该抛物线的解析式;

(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;

若不存在,说明理由;

(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相

等,若存在,直接写出点R的坐标;若不存在,说明理由.

 

查看答案和解析>>


同步练习册答案