二次函数的零点: 二次函数. (1)△>0.方程有两不等实根.二次函数的图象与轴有两个交点.二次函数有两个零点. (2)△=0.方程有两相等实根.二次函数的图象与轴有一个交点.二次函数有一个二重零点或二阶零点. (3)△<0.方程无实根.二次函数的图象与轴无交点.二次函数无零点. 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx+c
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),试证明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②对任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设数学公式
(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)
x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),试证明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②对任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),试证明:[f(x1)+f(x2)]>f()成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②对任意的x∈R,都有0≤f(x)-x≤?若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案