20. 已知A.B.C是椭圆上的三点.其中点A的坐标为.BC过椭圆m的中心.且. (Ⅰ)求椭圆的方程, (Ⅱ)过点的直线与椭圆m交于两点P.Q.设D为椭圆m与y轴负半轴的交点.且.求实数t的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且

(1)求椭圆的方程;

(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,设D为椭圆m与y轴负半轴的交点,且.求实数t的取值范围.

 

查看答案和解析>>

.(本题满分13分)已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.

  (1)求椭圆C的方程;

  (2)P(2,3),Q(2,-3)是椭圆上两点,A、B是椭圆上位于直线PQ两侧的两动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

 

 

 

 

 

 

查看答案和解析>>

(本小题满分13分)

已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形。

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q ?若存在求出点Q的坐标;若不存在,请说明理由。

 

查看答案和解析>>

.(本小题满分13分)

如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e =.(Ⅰ)求椭圆的标准方程;

(Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN

 

 

 

查看答案和解析>>

(本小题满分13分)已知椭圆C的中心在圆点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为(I)求椭圆C的方程;(II)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

 

查看答案和解析>>


同步练习册答案