题目列表(包括答案和解析)
(本题10分)一次函数y=x-3的图象与x轴,y轴分别交于点A,B.一个二次函数y=x2+bx+c的图象经过点A,B.
(1)求点A,B的坐标,并画出一次函数y=x-3的图象;
(2)求二次函数的解析式及它的最小值.
(本题10分) 随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场。一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售。预计每箱水果的盈利情况如下表:
| A种水果/箱 | B种水果/箱 |
甲店 | 11元 | 17元 |
乙店 | 9元 | 13元 |
有两种配货方案(整箱配货):
方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店_________箱,乙店__________箱;B种水果甲店_________箱,乙店__________箱.
(1) 如果按照方案一配货,请你计算出经销商能盈利多少元?
(2) 请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?
(3) 在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
(本题10分)如图,△ABC中,∠A=90º,∠ABC与∠ACB的角平分线交于点I,△ABC的外角∠DBC与∠BCE的角平分线交于P。
① 则∠BIC= ,∠P= (直接写出答案)
② 当∠A的度数增加4º时,∠BIC,∠P的度数发生怎样的变化?请说明理由。
(本题10分)如右图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=AE,AC=AD,点M是DE的中点,直线AM交直线BC于点N.将△ADE绕点A旋转,在旋转的过程中,请探究∠ANB与∠BAE的数量关系,并加以证明.
(本题10分)一本科普读物共页,王力读了一周(天)还没读完,而张勇不到一周就已读完张勇平均每天比王力多读页,王力每天读多少页?(答案取整数)
一、选择题(本题共10小题,每小题4分,共40分)
题号
1
2
3
4
5
6
7
8
9
10
答案
D
D
C
A
A
D
B
A
C
B
二、填空题(本题共6小题,每小题5分,共30分)
11. 12. 13.
14. 15. 16.
三、解答题(本题有8小题,共80分)
17.(本题8分)
(1)原式
(2)解:得:,,
把代入①得:,
18.(本题8分)
(1)证明:,,
在和中
(2)答案不惟一,如:,,等.
19.(本题8分)
解:(1)方法一:列表得
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
方法二:画树状图
(2)获奖励的概率:.
20.(本题8分)
(1)
(2),,.
21.(本题10分)
解:(1)是的切线,,
,.
(2),,.
(3),,,,
,.
22.(本题12分)
解:(1);40;
(2)人均进球数.
(3)设参加训练前的人均进球数为个,由题意得:
,解得:.
答:参加训练前的人均进球数为4个.
23.(本题12分)
(1)
(2)由题意得:,
,,(m).
(3),,
设长为,则,解得:(m),即(m).
同理,解得(m),.
24.(本题14分)
解:(1)直线的解析式为:.
(2)方法一,,,,
,,
是等边三角形,,
,.
方法二,如图1,过分别作轴于,轴于,
可求得,
,
,
当点与点重合时,
,
.
,
.
(3)①当时,见图2.
设交于点,
重叠部分为直角梯形,
作于.
,,
,
,
,
,
,
,
.
随的增大而增大,
当时,.
②当时,见图3.
设交于点,
交于点,交于点,
重叠部分为五边形.
方法一,作于,,
,
,
.
方法二,由题意可得,,,,
再计算
,
.
,当时,有最大值,.
③当时,,即与重合,
设交于点,交于点,重叠部
分为等腰梯形,见图4.
,
综上所述:当时,;
当时,;
当时,.
,
的最大值是.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com