21. 如图.四边形ABCD是边长为a的正方形.点G.E分别是边AB.BC的中点.∠AEF=90o.且EF交正方形外角的平分线CF于点F. (1)证明:∠BAE=∠FEC, (2)证明:△AGE≌△ECF, (3)求△AEF的面积. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数的图 像与y轴交于点A,点M在正比例函数的图像上,且MOMA.二次函数yx2bxc的图像经过点AM

(1)求线段AM的长;

(2)求这个二次函数的解析式;

(3)如果点By轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数的图像上,且四边形ABCD是菱形,求点C的坐标.

 

查看答案和解析>>

(本题满分8分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:

(1)画线段AD∥BC且使AD =BC,连接CD;

(2)线段AC的长为      ,CD的长为     ,AD的长为       

(3)△ACD为      三角形,四边形ABCD的面积为      

(4)若E为BC中点,则tan∠CAE的值是    

 

查看答案和解析>>

(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数的图 像与y轴交于点A,点M在正比例函数的图像上,且MOMA.二次函数yx2bxc的图像经过点AM

(1)求线段AM的长;

(2)求这个二次函数的解析式;

(3)如果点By轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数的图像上,且四边形ABCD是菱形,求点C的坐标.

 

查看答案和解析>>

(本题满分13分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.

⑴ 求证:△AMB≌△ENB;

⑵ ①当M点在何处时,AM+CM的值最小;

②当M点在何处时,AM+BM+CM的值最小,并说明理由;

⑶ 当AM+BM+CM的最小值为时,求正方形的边长.

 

 

查看答案和解析>>

(本题满分10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.

【小题1】(1)求证:DE∥BF;
【小题2】(2)若∠G=90,求证四边形DEBF是菱形.

查看答案和解析>>


同步练习册答案