22.光明中学七年级1班同学积极响应“阳光体育工程 的号召.利用课外活动时间积极参加体育锻炼.每位同学从长跑.篮球.铅球.立定跳远中选一项进行训练.训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.项目选择情况统计图 训练后篮球定时定点投篮测试进球数统计表 查看更多

 

题目列表(包括答案和解析)

(本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC可以绕点O作任意角度的旋转.

【小题1】(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;
【小题2】(2) 如果抛物线的对称轴经过点C,请你探究:
①当时,AB两点是否都在这条抛物线上?并说明理由;
②设,是否存在这样的m的值,使AB两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

(本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC可以绕点O作任意角度的旋转.

【小题1】(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;
【小题2】(2) 如果抛物线的对称轴经过点C,请你探究:
①当时,AB两点是否都在这条抛物线上?并说明理由;
②设,是否存在这样的m的值,使AB两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

(本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC可以绕点O作任意角度的旋转.

1.(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;

2.(2) 如果抛物线的对称轴经过点C,请你探究:

①当时,AB两点是否都在这条抛物线上?并说明理由;

②设 ,是否存在这样的m的值,使AB两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

 

查看答案和解析>>

(本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC可以绕点O作任意角度的旋转.

1.(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;

2.(2) 如果抛物线的对称轴经过点C,请你探究:

①当时,AB两点是否都在这条抛物线上?并说明理由;

②设 ,是否存在这样的m的值,使AB两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

 

查看答案和解析>>

(本题12分)如图8,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F.
(1)求证:△ABE≌△ADF;
(2)若∠BAE=∠EAF,求证:AE=BE;
(3)若对角线BD与AE、AF交于点M、N,且BM=MN(如图9).
求证:∠EAF=2∠BAE.

查看答案和解析>>

 

一、选择题(本题共10小题,每小题4分,共40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

A

A

D

B

A

C

B

二、填空题(本题共6小题,每小题5分,共30分)

11.             12.            13.

14.           15.              16.

三、解答题(本题有8小题,共80分)

17.(本题8分)

(1)原式

(2)解:得:

代入①得:

18.(本题8分)

(1)证明:

(2)答案不惟一,如:等.

19.(本题8分)

解:(1)方法一:列表得

 

A

B

C

D

A

 

(A,B)

(A,C)

(A,D)

B

(B,A)

 

(B,C)

(B,D)

C

(C,A)

(C,B)

 

(C,D)

D

(D,A)

(D,B)

(D,C)

 

方法二:画树状图

(2)获奖励的概率:

20.(本题8分)

(1)

(2)

21.(本题10分)

解:(1)的切线,

(2)

(3)

22.(本题12分)

解:(1);40;

(2)人均进球数

(3)设参加训练前的人均进球数为个,由题意得:

,解得:

答:参加训练前的人均进球数为4个.

23.(本题12分)

(1)

(2)由题意得:

(m).

(3)

长为,则,解得:(m),即(m).

同理,解得(m),

24.(本题14分)

解:(1)直线的解析式为:

(2)方法一,

是等边三角形,

方法二,如图1,过分别作轴于轴于

可求得

当点与点重合时,

(3)①当时,见图2.

于点

重叠部分为直角梯形

的增大而增大,

时,

②当时,见图3.

于点

于点于点

重叠部分为五边形

方法一,作

方法二,由题意可得

再计算

时,有最大值,

③当时,,即重合,

于点于点,重叠部

分为等腰梯形,见图4.

综上所述:当时,

时,

时,

的最大值是

 


同步练习册答案