(1) ∵OABC是平行四边形.∴AB∥OC.且AB = OC = 4. ∵A.B在抛物线上.y轴是抛物线的对称轴. ∴ A.B的横坐标分别是2和– 2. 代入y =+1得. A. ∴M (0.2). ---2分 (2) ① 过点Q作QH ^ x轴.设垂足为H. 则HQ = y .HP = x–t . 由△HQP∽△OMC.得:, 即: t = x – 2y , ∵ Q(x,y) 在y = +1上. ∴ t = –+ x –2. ---2分 当点P与点C重合时.梯形不存在.此时.t = – 4.解得x = 1±, 当Q与B或A重合时.四边形为平行四边形.此时.x = ± 2 ∴x的取值范围是x ¹ 1±, 且x¹± 2的所有实数. ---2分 ② 分两种情况讨论: 1)当CM > PQ时.则点P在线段OC上. ∵ CM∥PQ.CM = 2PQ . ∴点M纵坐标为点Q纵坐标的2倍.即2 = 2(+1).解得x = 0 . ∴t = –+ 0 –2 = –2 . --- 2分 2)当CM < PQ时.则点P在OC的延长线上. ∵CM∥PQ.CM = PQ. ∴点Q纵坐标为点M纵坐标的2倍.即+1=2´2.解得: x = ±. ---2分 当x = –时.得t = –––2 = –8 –, 当x =时. 得t =–8. ---2分 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

1.(1)问:始终与△AGC相似的三角形有               

2.(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);

3.(3)问:当x为何值时,△AGH是等腰三角形?

 

查看答案和解析>>

(本小题满分12分)

如图,反比例函数的图象经过A、B两点,根据图中信息解答下列问题:

1.(1)写出A点的坐标;

2.(2)求反比例函数的解析式;

3.(3)若点A绕坐标原点O旋转90°后得到点C,请写出点C的坐标;并求出直线BC的解析式.

 

查看答案和解析>>

  (本小题满分12分)

 1. (1)观察发现

    如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为        . (2分)

        

 

2.(2)实践运用

   如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.  (5分)

 

查看答案和解析>>

(本小题满分12分)某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长。(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离。阅读后回答下列问题:

1.(1)方案(I)是否可行?为什么?

2.(2)方案(II)是否切实可行?为什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否测得(或求出)AB的长?理由是         ,若ED=m,则AB=      

 

查看答案和解析>>

.(本小题满分12分)

如图,AD为△ABC的中线,BE为△ABD的中线。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;

(2)在△BED中作BD边上的高;

(3)若△ABC的面积为40,BD=5,则△BDEBD边上的高为多少?

 

查看答案和解析>>


同步练习册答案