用数学归纳法证明命题“(1+i)n(n∈N*)当n为3的倍数时为实数 时.在验证n=3时命题成立之后要断定此命题成立.还需要 A.在假设n=k(k是3的倍数)成立后.证明n=k+1时命题也成立 B.在假设n=3k(k∈N*)成立后.证明n=3k+1时命题也成立 C.在假设n=3k(k∈N*)成立后.证明n=3k+2时命题也成立 D.在假设n=3k(k∈N*)成立后.证明n=3k+3时命题也成立 查看更多

 

题目列表(包括答案和解析)

给出下列五个命题:其中正确的命题有    (填序号).
①函数y=sinx(x∈[-π,π])的图象与x轴围成的图形的面积

③在(a+b)n的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和;
④i+i2+i3+…i2012=0;
⑤用数学归纳法证明不等式的过程中,由假设n=k成立推到n=k+1成立时,只需证明即可.

查看答案和解析>>

给出下列五个命题:其中正确的命题有________(填序号).
①函数y=sinx(x∈[-π,π])的图象与x轴围成的图形的面积数学公式
数学公式
③在(a+b)n的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和;
④i+i2+i3+…i2012=0;
⑤用数学归纳法证明不等式数学公式的过程中,由假设n=k成立推到n=k+1成立时,只需证明数学公式即可.

查看答案和解析>>

给出下列五个命题:其中正确的命题有
②③④
②③④
(填序号).
①函数y=sinx(x∈[-π,π])的图象与x轴围成的图形的面积S=
π
sinxdx

C
r+1
n+1
=
C
r+1
n
+
C
r
n

③在(a+b)n的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和;
④i+i2+i3+…i2012=0;
⑤用数学归纳法证明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的过程中,由假设n=k成立推到n=k+1成立时,只需证明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>

给出下列五个命题:其中正确的命题有______(填序号).
①函数y=sinx(x∈[-π,π])的图象与x轴围成的图形的面积S=
π-π
sinxdx

Cr+1n+1
=
Cr+1n
+
Crn

③在(a+b)n的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和;
④i+i2+i3+…i2012=0;
⑤用数学归纳法证明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的过程中,由假设n=k成立推到n=k+1成立时,只需证明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>


同步练习册答案