1 解决实际应用问题时.要把问题中所涉及的几个变量转化函数关系式.这需要通过分析.联想.抽象和转化完成.函数的最值要由极值和端点的函数值确定.当定义域是开区间且函数只有一个极值时.这个极值就是它的最值.2.实际应用问题的解题程序: 1读题 2建模 3求解 4反馈 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

Monte-Carlo方法在解决数学问题中有广泛的应用。下面是利用Monte-Carlo方法来计算定积分。考虑定积分,这时等于由曲线轴,所围成的区域M的面积,为求它的值,我们在M外作一个边长为1正方形OABC。设想在正方形OABC内随机投掷个点,若个点中有个点落入中,则的面积的估计值为,此即为定积分的估计值I。向正方形中随机投掷10000个点,有个点落入区域M

(1)若=2099,计算I的值,并以实际值比较误差是否在5%以内

(2)求的数学期望

(3)用以上方法求定积分,求I与实际值之差在区间(—0.01,0.01)的概率

附表:

n

1899

1900

1901

2099

2100

2101

P(n)

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

查看答案和解析>>

(本小题满分14分)

Monte-Carlo方法在解决数学问题中有广泛的应用。下面是利用Monte-Carlo方法来计算定积分。考虑定积分,这时等于由曲线轴,所围成的区域M的面积,为求它的值,我们在M外作一个边长为1正方形OABC。设想在正方形OABC内随机投掷个点,若个点中有个点落入中,则的面积的估计值为,此即为定积分的估计值I。向正方形中随机投掷10000个点,有个点落入区域M

(1)若=2099,计算I的值,并以实际值比较误差是否在5%以内

(2)求的数学期望

(3)用以上方法求定积分,求I与实际值之差在区间(—0.01,0.01)的概率

附表:

n

1899

1900

1901

2099

2100

2101

P(n)

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

查看答案和解析>>

向量具有鲜明的物理学实际背景,物理学中有两种基本量——标量和矢量,矢量遍布物理学中的很多分支.它包括力、位移、速度等.虽然物理学中的矢量与数学中的向量并不完全相同,如:力除了有大小和方向外还有作用点,而数学中的向量则只有大小和方向,没有作用点.但这并不影响向量在物理学中的应用.请同学们讨论,举出一些物理学中的矢量的例子,并解决下列问题:一位模型赛车手遥控一辆赛车向正东方向前进1 m,逆时针方向转弯α,

 继续按直线向前行进1 m.再按逆时针方向转弯α,按直线向前行进1 m.按此方法继续操作下去.如图所示.

(1)作图说明当α=45°时,操作几次时赛车位移为零.

(2)按此方法操作赛车能回到出发点,α应满足什么条件?请写出其中两个.

查看答案和解析>>


同步练习册答案