2.平抛运动的规律 平抛运动可以看成是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动. 如图2所示.以抛出点为原点.取水平方向为x轴.正方向与初速度v0方向相同.竖直方向为y轴.正方向向下.设物体被抛出后.t 秒末.物体的位置为P.其坐标为x(t 秒内的水平位移)和y(t 秒内的下落高度).t 秒末的速度v的坐标分量为vx.vy.则 ⑴ 平抛运动的轨迹 由x=v0t . y=gt2 .可得y=x2.因此平抛运动的轨迹是一条抛物线. ⑵ 位移公式 水平位移x=v0t.竖直位移y=gt2 平抛物体在t 秒内的位移s.可直接用两个分运动在同一时间内的位移来合成:s=.位移的方向与水平方向的夹角由下式决定:tanα== ⑶ 速度公式 水平速度为vx=v0 .竖直速度为 vy=gt 平抛物体在某时刻的瞬时速度用两个分运动在此时刻的瞬时速度来合成.平抛物体在t时刻的速度大小为v =.速度v的方向与水平方向的夹角β.由下式决定:tanβ== 例1 如图所示.飞机距离地面高H=500 m.水平飞行速度为v1=100 m/s.追击一辆速度为v2=20 m/s同向行驶的汽车.欲使投弹击中汽车.飞机应在距汽车水平距离多远处投弹?(g=10 m/s2) 解析 炸弹脱离飞机后做平抛运动.其下落时间由竖直高度决定.即H=gt2.所以t==s=10 s.设飞机距车水平距离为x处投弹.则炸弹做平抛运动的水平位移为v1t.在炸弹飞行过程中汽车做匀速运动.其位移为v2t.据几何关系有:x+v2t=v1t 所以x=(v1-v2)t=×10 m=800 m. 点评 本题可看作是追及问题的一种变形.在水平方向仍然存在着位移关系:追上时.追及者的位移大小等于被追及者的位移大小与两者初始间距的和. 例2 如图在倾角为θ的斜面顶端A处以速度v0水平抛出一小球.落在斜面上的某一点B处.设空气阻力不计.求 ⑴ 小球从A运动到B处所需的时间, ⑵ 从抛出开始计时.经过多长时间小球离斜面的距离达到最大? 解析 ⑴ 小球做平抛运动.同时受到斜面体的限制.设小球从A运动到B处所需的时间为t.则:水平位移为x=v0t . 竖直位移为y=, 由数学关系得到: ⑵ 从抛出开始计时.经过t1时间.当小球的速度与斜面平行时.小球离斜面的距离达到最大. 因为vy1=gt1=v0tanθ.所以 点评 用运动合成和分解方法研究平抛运动.要根据运动的独立性理解平抛运动的两分运动.即水平方向的匀速直线运动和竖直方向的自由落体运动.其运动规律有两部分:一部分是速度规律.另一部分是位移规律.对具体的平抛运动.关键是分析出问题是与位移规律有关还是与速度规律有关. 例3 如图所示.一高度为h=0.2m的水平面在A点处与一倾角为θ=30°的斜面连接.一小球以V0=5m/s的速度在平面上向右运动.求小球从A点运动到地面所需的时间(平面与斜面均光滑.取g=10m/s2). 某同学对此题的解法为:小球沿斜面运动.则.由此可求得落地的时间t.问:你同意上述解法吗?若同意.求出所需的时间,若不同意.则说明理由并求出你认为正确的结果. 解析 不同意.小球应在A点离开平面做平抛运动.而不是沿斜面下滑. 正确做法为:落地点与A点的水平距离 斜面底宽 因为.所以小球离开A点后不会落到斜面.因此落地时间即为平抛运动时间. ∴ 查看更多

 

题目列表(包括答案和解析)

竖直方向的抛体运动、斜抛运动

1.竖直下抛运动:

(1)定义:将物体以一定的初速度________竖直抛出,物体只在重力作用下运动.

(2)规律:①速度公式:________ ②位移公式:________

2.竖直上抛运动:

(1)定义:将物体以一定的初速度________竖直抛出,物体只在重力作用下运动.

(2)竖直上抛运动的特点:是一种________直线运动,上升过程与下降过程,运动具有________

(3)常用研究方法——分段法:竖直上抛运动可分为上升和下降两个阶段,上升阶段是________直线运动,下降阶段是________直线运动

(4)规律:①速度公式:________ ②位移公式:________ ③上升至最高点的时间:________ ④上升能达到的最大高度________

3.斜抛运动的特点:可看成是竖直方向的________运动和水平方向的________运动.

查看答案和解析>>

以下是几位同学对曲线运动的规律的探究,请据要求回答问题.
(1)甲同学设计了如图甲所示的演示实验,来研究平抛运动.两球置于同一高度,用力快速击打右侧挡板后,他观察到的现象是
 
,这说明
 

(2)乙同学设计了如图乙的演示实验,来研究平抛运动.轨道1安置在轨道2的正上方,两轨道的槽口均水平,且在同一竖直线上,滑道2与光滑水平板吻接.将两个质量相等的小钢球,从斜面的同一高度由静止同时释放,他观察到的现象是
 
,这说明
 

(3)在学习运动的合成与分解时我们做过如图丙所示的实验.在长约80cm~100cm一端封闭的玻璃管中注满清水,水中放一个用红蜡做成的小圆柱体(小圆柱体恰能在管中匀速上浮),将玻璃管的开口端用胶塞塞紧.然后将玻璃管竖直倒置,在红蜡块匀速上浮的同时使玻璃管紧贴黑板面水平向右匀加速移动,你正对黑板面将看到红蜡块相对于黑板面的移动轨迹可能是图丁中的
 

精英家教网

查看答案和解析>>

某同学为了估测自行车受到的阻力,设计了下列实验:自行车在水平路面上直线行驶,某时刻人停止用力蹬脚踏,则自行车前进一段距离就会停下来.如果把人和车的运动看成匀减速运动,测出人停止用力时的速度v0,减速运动的距离为s,人和自行车的总质量为m,则可以求出自行车受到的平均阻力F.

(1)根据力学知识,求出平均阻力的表达式.

(2)关于初速度v0的测定,设计了如下方案

①在停止用力前,尽可能使自行车做匀速直线运动,通过测量时间和距离,计算出平均速度,以它作为停止用力时的速度;

②测出自行车从停止用力到静止时前进的距离和时间,再根据匀减速运动的规律,求出初速度;

③停止用力时从车上释放一小石块,测得释放的高度和石块在水平方向上通过的距离,可求出初速度;

④停止用力时从车上(相对车)竖直上抛一小石块,测出上抛时手的高度和石块在水平方向上通过的距离,可求出初速度.

你认为以上方案中哪些可行?你还有没有别的方法?

查看答案和解析>>

某同学为了估测自行车受到的阻力,设计了下列实验:自行车在水平路面上直线行驶,某时刻人停止用力蹬脚踏,则自行车前进一段距离就会停下来.如果把人和车的运动看成匀减速运动,测出人停止用力时的速度v0,减速运动的距离为s,人和自行车的总质量为m,则可以求出自行车受到的平均阻力F.

(1)根据力学知识,求出平均阻力的表达式.

(2)关于初速度v0的测定,设计了如下方案

①在停止用力前,尽可能使自行车做匀速直线运动,通过测量时间和距离,计算出平均速度,以它作为停止用力时的速度;

②测出自行车从停止用力到静止时前进的距离和时间,再根据匀减速运动的规律,求出初速度;

③停止用力时从车上释放一小石块,测得释放的高度和石块在水平方向上通过的距离,可求出初速度;

④停止用力时从车上(相对车)竖直上抛一小石块,测出上抛时手的高度和石块在水平方向上通过的距离,可求出初速度.

你认为以上方案中哪些可行?你还有没有别的方法?

查看答案和解析>>

第三部分 运动学

第一讲 基本知识介绍

一. 基本概念

1.  质点

2.  参照物

3.  参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)

4.绝对运动,相对运动,牵连运动:v=v+v 

二.运动的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数

5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是

三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)

6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好

三.等加速运动

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。) 

练习题:

一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)

四.刚体的平动和定轴转动

1. 我们讲过的圆周运动是平动而不是转动 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是标量,而极小的角位移是矢量

4.  同一刚体上两点的相对速度和相对加速度 

两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三质点速度分别V,VB  ,VC      

求G的速度。

五.课后习题:

一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。

五、处理问题的一般方法

(1)用微元法求解相关速度问题

例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。

(vA

(2)抛体运动问题的一般处理方法

  1. 平抛运动
  2. 斜抛运动
  3. 常见的处理方法

(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动

(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题

(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解

例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?

(α=、 x=

第二讲 运动的合成与分解、相对运动

(一)知识点点拨

  1. 力的独立性原理:各分力作用互不影响,单独起作用。
  2. 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
  3. 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
  4. 运动的合成分解:矢量合成分解的规律方法适用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

参考系的转换:动参考系,静参考系

相对运动:动点相对于动参考系的运动

绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动

牵连运动:动参考系相对于静参考系的运动

(5)位移合成定理:SA对地=SAB+SB对地

速度合成定理:V绝对=V相对+V牵连

加速度合成定理:a绝对=a相对+a牵连

(二)典型例题

(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。

提示:矢量关系入图

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?

提示:V人对梯=n1/t1

      V梯对地=n/t2

      V人对地=n/t3

V人对地= V人对梯+ V梯对地

答案:n=t2t3n1/(t2-t3)t1

(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?

提示:如图船航行

答案:1.58m/s

(三)同步练习

1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)

2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?

3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。

4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。

(四)同步练习提示与答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。

2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);

第二段和第三段大小相同。

参见右图,显然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法与练习一类似。答案为:3

4、提示:(1)写成参数方程后消参数θ。

(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v = vAcosθ,v = vA,可知B端相对A的转动线速度为:v + vAsinθ=  

P点的线速度必为  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>


同步练习册答案