题目列表(包括答案和解析)
(2)设离散型随机变量ξ可能取的值为x1,x2,…,xi,…,ξ取每一个值xi(i=1,2,…,n,…)的概率P(ξ=xi)=pi,则称表
ξ | x1 | x2 | … | xi | … |
P | p1 | ____ | … | ____ | … |
? 为随机变量ξ的概率分布.具有性质:①pi______,i=1,2,…,n,…;②p1+p2+…+pn+…=_________.
离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率_______.?
(3)二项分布:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=_______,其中k=0,1,2,3,…,n,q=1-p.于是得到随机变量ξ的概率分布如下:
ξ | 0 | 1 | … | k | … | n |
P | p0qn | C1np1qn-1 | … | ____ | … | pnq0 |
由于pkqn-k恰好是二项展开式(q+p)n=p0qn+p1qn-1+…+________+…+pnq0中的第k+1项(k=0,1,2,…,n)中的各个值,故称为随机变量ξ的二项分布,记作ξ~B(n,p).
随机变量的分布列
(1)如果随机试验的结果可以用一个_________来表示,那么这样的_________叫做随机变量;
(2)设随机变量ξ可能取的值为X1、X2,…,Xi,…,ξ取每一个值Xi(i=1,2,…,n,…)的概率P(ξ=Xi)=Pi,则称表
为随机变量ξ的概率分布,具有性质:①_________(i=1,2…,n…);②P1+P2+…=_________.
随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率_________.
一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有
缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺 点的零件数y(件) | 11 | 9 | 8 | 5 |
(1)对变量y与x进行相关性检验;
(2)如果y与x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺 点的零件数y(件) | 11 | 9 | 8 | 5 |
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数y(件) | 11 | 9 | 8 | 5 |
656.25 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com