题目列表(包括答案和解析)
若函数在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数
的取值范围.
【解析】第一问中,利用定义,判定由题意得,由
,所以
第二问中, 由题意得方程有两实根
设所以关于m的方程
在
有两实根,
即函数与函数
的图像在
上有两个不同交点,从而得到t的范围。
解(I)由题意得,由
,所以
(6分)
(II)由题意得方程有两实根
设所以关于m的方程
在
有两实根,
即函数与函数
的图像在
上有两个不同交点。
已知向量=(
),
=(
,
),其中(
).函数
,其图象的一条对称轴为
.
(I)求函数的表达式及单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若=1,b=l,S△ABC=
,求a的值.
【解析】第一问利用向量的数量积公式表示出,然后利用
得到
,从而得打解析式。第二问中,利用第一问的结论,表示出A,结合正弦面积公式和余弦定理求解a的值。
解:因为
由余弦定理得,……11分故
(本小题满分12分)已知函数
(I)若函数在区间
上存在极值,求实数a的取值范围;
(II)当时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1),其定义域为
,则
令
,
则,
当时,
;当
时,
在(0,1)上单调递增,在
上单调递减,
即当时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式,即
令
(6分)
令,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当时,
恒成立,即
,
令,则
, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
设函数f(x)=lnx,g(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]
【解析】第一问解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
第二问,由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,
,有
;当
时,
,有
;当x=1时,
,有
解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
(11)由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,
,有
;当
时,
,有
;当x=1时,
,有
已知函数,数列
的项满足:
,(1)试求
(2) 猜想数列的通项,并利用数学归纳法证明.
【解析】第一问中,利用递推关系,
,
第二问中,由(1)猜想得:然后再用数学归纳法分为两步骤证明即可。
解: (1) ,
,
…………….7分
(2)由(1)猜想得:
(数学归纳法证明)i) ,
,命题成立
ii) 假设时,
成立
则时,
综合i),ii) : 成立
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com