函数f (x )对任意的m.n∈R, 都有f -1, 并且x>0时, 恒有f 求证: f (x )在R上是增函数; =4, 解不等式f ()<2. 查看更多

 

题目列表(包括答案和解析)

函数f(x)对任意的m、n∈R都有f(m+n)=f(m)+f(n)-1,并且当x>0时,f(x)>1.

(1)求证:f(x)在R上是增函数;

(2)若f(3)=4,解不等式f(a2+a-5)<2.

查看答案和解析>>

设函数f(x)=x2+2lnx,用f′(x)表示f(x)的导函数,g(x)=(x2-
m2
12
)f′(x)
,其中m∈R,且m>0.
(1)求函数f(x)的单调区间;
(2)若对任意的x1x2∈[
1
3
,1]
都有f′(x1)≤g′(x2)成立,求m实数的取值范围;
(3)试证明:对任意正数a和正整数n,不等式[f′(a)]n-2n-1f′(an)≥2n(2n-2).

查看答案和解析>>

设函数f(x)=x2+2lnx,用f'(x)表示f(x)的导函数,g(x)=(x2-
m2
12
)f′(x)
,(其中m∈R,且m>0.)
(1)求函数f(x)的单调区间;
(2)若对任意的x1x2∈[
1
3
,1]
都有f'(x1)≤g'(x2)成立,求实数m的取值范围;
(3)试证明:对任意正数a和正整数n,不等式[f'(a)]n-2n-1f'(an)≥2n(2n-2)恒成立.

查看答案和解析>>

设函数f(x)=x2+2lnx,用f′(x)表示f(x)的导函数,数学公式,其中m∈R,且m>0.
(1)求函数f(x)的单调区间;
(2)若对任意的x1数学公式都有f′(x1)≤g′(x2)成立,求m实数的取值范围;
(3)试证明:对任意正数a和正整数n,不等式[f′(a)]n-2n-1f′(an)≥2n(2n-2).

查看答案和解析>>

设函数f(x)=x2+2lnx,用f′(x)表示f(x)的导函数,,其中m∈R,且m>0.
(1)求函数f(x)的单调区间;
(2)若对任意的x1都有f′(x1)≤g′(x2)成立,求m实数的取值范围;
(3)试证明:对任意正数a和正整数n,不等式[f′(a)]n-2n-1f′(an)≥2n(2n-2).

查看答案和解析>>


同步练习册答案