3.前n项和, q≠1时.=. 注:应用前n项和公式时,一定要区分q=1与q≠1的两种不同情况,必要的时候要分类讨论. 查看更多

 

题目列表(包括答案和解析)

已知数列{an}是由正数组成的等比数列,Sn是其前n项和.
(1)当首项a1=2,公比q=
1
2
时,对任意的正整数k都有
Sk+1-c
Sk-c
<2
(0<c<2)成立,求c的取值范围;
(2)判断SnSn+2-
S
2
n+1
(n∈N*)
的符号,并加以证明;
(3)是否存在正常数m及自然数n,使得lg(Sn-m)+lg(Sn+2-m)=2lg(Sn+1-m)成立?若存在,请求出相应的m,n;若不存在,说明理由.

查看答案和解析>>

已知数列{an}的前n项和Sn=qn-1(q>0,且q为常数),某同学得出如下三个结论:
①{an}的通项是an=(q-1)•qn-1
②{an}是等比数列;
③当q≠1时,SnSn+2<S
 
2
n
+1.
其中正确结论的个数为(  )

查看答案和解析>>

若数列{an}的通项an=
1
pn-q
,实数p,q满足p>q>0且p>1,sn为数列{an}的前n项和.
(1)求证:当n≥2时,pan<an-1
(2)求证sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求证sn
2
3

查看答案和解析>>

(2008•奉贤区二模)已知等比数列{an}的公比为q,Sn是{an}的前n项和.
(1)若a1=1,q>1,求
lim
n→∞
an
Sn
的值;
(2)若a1=1;对①q=
1
2
和②q=-
1
2
时,分别研究Sn的最值,并说明理由;
(3)若首项a1=10,设q=
1
t
,t是正整数,t满足不等式|t-63|<62,且对于任意正整数n有9<Sn<12成立,问:这样的数列{an}有几个?

查看答案和解析>>

 

(理)已知数列{an}的前n项和,且=1,

.

(I)求数列{an}的通项公式;

(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有

< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;

(III)求证:≤bn<2.

(文)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=.

(I)求点M的轨迹方程;

(II)若过B点且斜率为- 的直线与轨迹M交于

         点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为

         锐角三角形时t的取值范围.

 

 

 

 

查看答案和解析>>


同步练习册答案