数列{an}的前n项和为Sn.数列{bn}中.b1=a1.bn=an-an-1(n≥2).若an+Sn=n. (1)设cn=an-1.求证:数列{cn}是等比数列, (2)求数列{bn}的通项公式. 证明(1):∵a1=S1.an+Sn=n.∴a1+S1=1.得a1=. 又an+1+Sn+1=n+1.两式相减得2(an+1-1)=an-1.即=.也即=.故数列{cn}是等比数列. (2)解:∵c1=a1-1=-. ∴cn=-.an=cn+1=1-.an-1=1-. 故当n≥2时.bn=an-an-1=-=.又b1=a1=.即bn=(n∈N*). 查看更多

 

题目列表(包括答案和解析)

数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Sn
Sn
1
4
与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.

查看答案和解析>>

数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Sn数学公式数学公式与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.

查看答案和解析>>

数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Sn与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.

查看答案和解析>>

数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Sn与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.

查看答案和解析>>

数列{an}的前n项和为Sn(n∈N*),Sn=(m+1)-man对任意的n∈N*都成立,其中m为常数,且m<-1.
(1)求证:数列{an}是等比数列;
(2)记数列{an}的公比为q,设q=f(m).若数列{bn}满足;b1=a1,bn=f(bn-1)(n≥2,n∈N*).求证:数列{
1bn
}
是等差数列;
(3)在(2)的条件下,设cn=bn•bn+1,数列{cn}的前n项和为Tn.求证:Tn<1.

查看答案和解析>>


同步练习册答案