题目列表(包括答案和解析)
如图,某市准备在一个湖泊的一侧修建一条直路,另一侧修建一条观光大道,它的前一段
是以
为顶点,
轴为对称轴,开口向右的抛物线的一部分,后一段
是函数
,
时的图象,图象的最高点为
,
,垂足为
.
(1)求函数的解析式;
(2)若在湖泊内修建如图所示的矩形水上乐园,问:点
落在曲线
上何处时,水上乐园的面积最大?
在四棱锥中,
平面
,底面
为矩形,
.
(Ⅰ)当时,求证:
;
(Ⅱ)若边上有且只有一个点
,使得
,求此时二面角
的余弦值.
【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,
又因为,
………………2分
又,得证。
第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
设BQ=m,则Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知时,存在点Q使得
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得
由此知道a=2, 设平面POQ的法向量为
,所以
平面PAD的法向量
则的大小与二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值为
解:(Ⅰ)当时,底面ABCD为正方形,
又因为,
又
………………3分
(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,
则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
设BQ=m,则Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知时,存在点Q使得
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,
设平面POQ的法向量为
,所以
平面PAD的法向量
则的大小与二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值为
如图(1)一座钢索结构桥的立柱PC与QD的高度都是60 cm,A,C之间的距离是200 m,B,D间的距离为250 m,C,D间距离为2000 m,P点与A点间、Q点与B点间分别用直线式桥索相连结,立柱PC,QD间可以近似的看作是抛物线式钢索PEQ相连结,E为顶点,与AB距离为10 m,现有一只江鸥从A点沿着钢索AP,PEQ,QB走向B点,试写出从A点走到B点江鸥距离桥面的高度与移动的水平距离之间的函数关系.
王小明同学采用先建立直角坐标系,再求关系式的方法,他写道:
如图(2),以A点为原点,桥面AB所在直线为x轴,过A点且垂直与AB的直线为y轴,建立直角坐标系,则A(0,0),C(200,0),P( ),E( ),D(2200,0),Q( ),B(2450,0).请你先把上面没有写全的坐标补全,然后在王小明同学已建立的直角坐标系下完整地解决本题.
如图(1)一座钢索结构桥的立柱PC与QD的高度都是60 cm,A,C之间的距离是200 m,B,D间的距离为250 m,C,D间距离为2000 m,P点与A点间、Q点与B点间分别用直线式桥索相连结,立柱PC,QD间可以近似的看作是抛物线式钢索PEQ相连结,E为顶点,与AB距离为10 m,现有一只江鸥从A点沿着钢索AP,PEQ,QB走向B点,试写出从A点走到B点江鸥距离桥面的高度与移动的水平距离之间的函数关系.
王小明同学采用先建立直角坐标系,再求关系式的方法,他写道:
如图(2),以A点为原点,桥面AB所在直线为x轴,过A点且垂直与AB的直线为y轴,建立直角坐标系,则A(0,0),C(200,0),P( ),E( ),D(2200,0),Q( ),B(2450,0).请你先把上面没有写全的坐标补全,然后在王小明同学已建立的直角坐标系下完整地解决本题.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com