顶点为(a+b.c2-a2-b2),由已知c2-a2-b2=0.∴Rt△ 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
经过 点B(0,
3
)
,且离心率为
1
2
,右顶点为A,左右焦点分别为F1,F2;椭圆C2以坐标原点为中心,且以F1F2为短轴端,上顶点为D.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)若C1与C2交于M、N、P、Q四点,当AD∥F2B时,求四边形MNPQ的面积.

查看答案和解析>>

以椭圆C1
x2
a2
+
y2
b2
=1(a、b>0)焦点为顶点,以椭圆C1的顶点为焦点的双曲线C2,下列结论中错误的是(  )

查看答案和解析>>

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,上顶点为A,P为C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,若与AF平行且在y轴上的截距为3-
2
的直线l恰好与圆C2相切.
(Ⅰ)已知椭圆C1的离心率;
(Ⅱ)若
PM
PN
的最大值为49,求椭圆C1的方程.

查看答案和解析>>

如图,抛物线C1y2=4x的焦点到准线的距离与椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)
的长半轴相等,设椭圆的右顶点为A,C1,C2在第一象限的交点为B,O为坐标原点,且△OAB的面积为
2
6
3

(1)求椭圆C2的标准方程;
(2)过点A作直线l交C1于C,D两点,射线OC,OD分别交C2于E,F两点.
(I)求证:O点在以EF为直径的圆的内部;
(II)记△OEF,△OCD的面积分别为S1,S2,问是否存在直线l,使得S2=3S1?请说明理由.

查看答案和解析>>

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该双曲线C2:以椭圆C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限内的任意一点,且c=
a2-b2

(1)设
PF1
PF2
的最大值为2c2,求椭圆离心率;
(2)若椭圆离心率e=
1
2
时,是否存在λ,总有∠BAF1=λ∠BF1A成立.

查看答案和解析>>


同步练习册答案