二次函数f(x)=ax2+bx+c的图象性质是处理二次函数问题的重要依据. 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(abc≠0).
(1)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(2)在同一函数图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点为C(x0,y0),记直线AB的斜率为k,
①对于二次函数f(x)=ax2+bx+c,求证:k=f′(x0);
②对于“伪二次函数”g(x)=ax2+bx+clnx,是否有①同样的性质?证明你的结论.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(abc≠0).
(1)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(2)在同一函数图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点为C(x0,y0),记直线AB的斜率为k,
①对于二次函数f(x)=ax2+bx+c,求证:k=f′(x0);
②对于“伪二次函数”g(x)=ax2+bx+clnx,是否有①同样的性质?证明你的结论.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(a、b、c∈R,abc≠0),
(I)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在二次函数f(x)=ax2+bx+c图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点的横坐标为x0,记直线AB的斜率为k,(i)求证:k=f′(x0);(ii)对于“伪二次函数”g(x)=ax2+bx+clnx,是否有(i)同样的性质?证明你的结论.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(a、b、c∈R,abc≠0),
(I)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在二次函数f(x)=ax2+bx+c图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点的横坐标为x,记直线AB的斜率为k,(i)求证:k=f′(x);(ii)对于“伪二次函数”g(x)=ax2+bx+clnx,是否有(i)同样的性质?证明你的结论.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(abc≠0).
(1)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(2)在同一函数图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点为C(x,y),记直线AB的斜率为k,
①对于二次函数f(x)=ax2+bx+c,求证:k=f′(x);
②对于“伪二次函数”g(x)=ax2+bx+clnx,是否有①同样的性质?证明你的结论.

查看答案和解析>>


同步练习册答案