9.对于函数f(x).若存在x0∈R.使f(x0)=x0成立.则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0)(1)当a=1.b=-2时.求f(x)的不动点, (2)若对于任意实数b.函数f(x)恒有两个相异的不动点.求a的取值范围. 解:(1)当a=1.b=-2时.f(x)=x2-x-3=xx2-2x-3=0(x-3)(x+1)=0x=3或x=-1.∴f(x)的不动点为x=3或x=-1. (2)对任意实数b.f(x)恒有两个相异不动点 对任意实数b.ax2+(b+1)x+b-1=x即ax2+bx+b-1=0恒有两个不等实根对任意实数b.Δ=b2-4a(b-1)>0恒成立 对任意实数b.b2-4ab+4a>0恒成立 Δ′=(4a)2-4×4a<00<a<1. 查看更多

 

题目列表(包括答案和解析)

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0f(x)的不动点.如果函数

f(x)=ax2bx+1(a>0)有两个相异的不动点x1x2

⑴若x1<1<x2,且f(x)的图象关于直线xm对称,求证:<m<1;

⑵若|x1|<2且|x1x2|=2,求b的取值范围.

查看答案和解析>>

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.

查看答案和解析>>

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0f(x)的不动点.如果函数
f(x)=ax2bx+1(a>0)有两个相异的不动点x1x2
⑴若x1<1<x2,且f(x)的图象关于直线xm对称,求证:<m<1;
⑵若|x1|<2且|x1x2|=2,求b的取值范围.

查看答案和解析>>

对于函数f(x)若存在x0R使f(x0)x0成立则称x0f(x)的不动点已知函数f(x)ax2(b1)xb1(a≠0)

(1)a1b=-2f(x)的不动点;

(2)若对任意实数b函数f(x)恒有两个相异的不动点,求a的取值范围.

 

查看答案和解析>>

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点。如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(-2)<
(1)求函数f(x)的解析式;
(2)已知各项不为零的数列{an}满足4Sn·=1(Sn为数列前n项和),求数列{an}的通项公式an
(3)如果数列{an}满足a1=4,an+1=f(an),求证:当n≥2时,恒有an<3成立.

查看答案和解析>>


同步练习册答案