题目列表(包括答案和解析)
已知数列是公差不为零的等差数列,,且、、成等比数列。
⑴求数列的通项公式;
⑵设,求数列的前项和。
【解析】第一问中利用等差数列的首项为,公差为d,则依题意有:
第二问中,利用第一问的结论得到数列的通项公式,
,利用裂项求和的思想解决即可。
设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是
A.若d<0,则数列{S n}有最大项
B.若数列{S n}有最大项,则d<0
C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0
D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列
【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.
【答案】C
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.
【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1. 第二问中,,由第一问中知道,然后利用裂项求和得到Tn.
解: (Ⅰ) 设:{an}的公差为d,
因为解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因为……………8分
设为实数,首项为,公差为的等差数列的前n项和为,满足
(1)若,求及;
(2)求d的取值范围.
【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用和已知的,得到结论
第二问中,利用首项和公差表示,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。
解:(1)因为设为实数,首项为,公差为的等差数列的前n项和为,满足
所以
(2)因为
得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到
已知是等差数列,其前n项和为Sn,是等比数列,且,.
(Ⅰ)求数列与的通项公式;
(Ⅱ)记,,证明().
【解析】(1)设等差数列的公差为d,等比数列的公比为q.
由,得,,.
由条件,得方程组,解得
所以,,.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:数学归纳法)
① 当n=1时,,,故等式成立.
② 假设当n=k时等式成立,即,则当n=k+1时,有:
即,因此n=k+1时等式也成立
由①和②,可知对任意,成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com