题目列表(包括答案和解析)
大家知道,解分式方程的基本方法是,把方程的两边同乘以各分母的最简公分母,化为整式方程来解,而对于一些特殊的分式方程来说,采用上述方法往往越解越繁.下面我们介绍一种简捷、明快的方法--拆项法.
例:解方程
解:先降低方程中各分式分子的次数,将原方程变形为
即(4+)-(7+)=(1-)-(4-)
整理得
两边各自通分得
∴(x-2)(x-1)=(x-7)(x-6)
即x2-3x+2=x2-13x+42
也即10x=40 ∴x=4
经检验知,x=4是原方程的根.
请你运用上述方法,解分式方程
先阅读,然后解决问题:
已知:一次函数和反比例函数,求这两个函数图象在同一坐标系内的交点坐标。
解:解方程-x+2=
去分母,得
-x2+2x=-8
整理得
x2-2x-8=0
解这个方程得:x1=-2 x2=4
经检验,x1=-2 x2=4是原方程的根
当x1=-2,y1=4;x2=4,y2=-2
∴交点坐标为(-2,4)和(4,-2)
问题:
1.在同一直角坐标系内,求反比例函数y=的图象与一次函数y=x+3的图象的交点坐标;
2.判断一次函数y=2x-3的图象与反比例函数y=-的图象在同一直角坐标系内有无交点,说明理由.
先阅读,然后解决问题:
已知:一次函数和反比例函数,求这两个函数图象在同一坐标系内的交点坐标。
解:解方程-x+2=
去分母,得
-x2+2x=-8
整理得
x2-2x-8=0
解这个方程得:x1=-2 x2=4
经检验,x1=-2 x2=4是原方程的根
当x1=-2,y1=4;x2=4,y2=-2
∴交点坐标为(-2,4)和(4,-2)
问题:
1.在同一直角坐标系内,求反比例函数y=的图象与一次函数y=x+3的图象的交点坐标;
2.判断一次函数y=2x-3的图象与反比例函数y=-的图象在同一直角坐标系内有无交点,说明理由.
阅读某同学解下面分式方程的过程
解方程+=+
解:-=- ①
= ②
= ③
∴x2-6x+8=x2-4x+3
∴x=经检验,x=是原方程的解.
请你回答:
(1)得到①式的做法是________;
得到②式的做法是________;
得到③式的理由是________.
(2)上述解答对吗?若不对,找出错误,并加以改正.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com