题目列表(包括答案和解析)
(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
(本小题满分12分)
如图,在三棱柱中,所有的棱长都为2,.
(Ⅰ)求证:;
(Ⅱ)当三棱柱的体积最大时,求平面与平面所成的锐角的余弦值.
(本小题满分12分)如图,已知正三棱柱的各棱长都是4, 是的中点,动点在侧棱上,且不与点重合.
(I)当时,求证:;
(II)设二面角的大小为,求的最小值.
(本小题满分12分)
如图,四棱椎P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是300,点F是PB的中点,点E在边BC上移动。
(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)证明:无论点E在边BC的何处,都有AF⊥PE;
(3)求当BE的长为多少时,二面角P-DE-A的大小为450。
(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点.
(Ⅰ) 求证:AC⊥SD;
(Ⅱ) 若SD⊥平面PAC,求二面角 P-AC-D的大小
(Ⅲ) 在(Ⅱ)的条件下,侧棱SC上是 否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com