2.已知直线l1:mx-y=0.l2:x+my-m-2=0. (1)求证:对m的任意实数值.l1和l2的交点P在一定圆上, (2)若l1与定圆另一交点P1.l2与定圆另一交点为P2.求当m在实数范围内取值时.△PP1P2的面积的最大值.并求此时l1的方程. 解答:(1)证明:由mx-y=0.得m=代入x+my-m-2=0中得x+y--2=0.即x2+y2-y-2x=0.亦即(x-1)2+(y-)2=.所以.l1和l2的交点在定圆上. (2)由消去y.得(1+m2)x2-(m+2)x=0. ∴P1(0,0).P(.).∴|P1P|= =. 由 得P2(2,1).∵|P2P|= =. 又∵l1⊥l2.∴△PP1P2为直角三角形. ∴S△PP1P2=|P1P|·|P2P|=·=·. 令y=.则(y-2)m2-3m+y+2=0.① 当y≠2时.应有Δ=(-3)2-4(y-2)(y+2)≥0.得-≤y≤. ∴||的最大值为.∴△PP1P2的最大面积为. 此时y=±代入①式中求得m=3或-. ∴此时l1的方程为y=3x或y=-x. 查看更多

 

题目列表(包括答案和解析)

已知直线l1:mx-y=0,l2:x+my-m-2=0.

(1)求证:对m∈R,l1l2的交点P在一个定圆上;

(2)若l1与定圆的另一个交点为P1l2与定圆的另一交点为P2,求当m在实数范围内取值时,ΔPP1P2面积的最大值及对应的m.

查看答案和解析>>

已知m为实数,直线l1mxy+3=0,l2:(3m-2)xmy+2=0,则“m=1”是“l1l2”的______条件(请在“充要、充分不必要、必要不充分、既不充分也不必要”中选择一个填空).

查看答案和解析>>

已知m为实数,直线l1mxy30l2(3m2)xmy20,则m1”l1l2______条件(请在充要、充分不必要、必要不充分、既不充分也不必要中选择一个填空)

 

查看答案和解析>>

已知m为实数,直线l1mxy+3=0,l2:(3m-2)xmy+2=0,则“m=1”是“l1l2”的______条件(请在“充要、充分不必要、必要不充分、既不充分也不必要”中选择一个填空).

查看答案和解析>>

已知三条直线l1:mx-y+m=0,l2:x+my-(m+1)=0,l3:(m+1)x-y+(m+1)=0,它们围成△ABC.

(1)求证:不论m取何值时,△ABC中总有一个顶点为定点;

(2)当m取何值时,△ABC的面积取最大值、最小值?并求出最大值、最小值.

查看答案和解析>>


同步练习册答案