2.函数的单调性定义 如果函数y=f(x)在某个区间上是增函数或是减函数.那么就说函数y=f(x)在这一区间具有单调性.区间D叫做y=f(x)的 . 查看更多

 

题目列表(包括答案和解析)

函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
Ⅰ.求证:f(0)=1;
Ⅱ.当x<0时,比较f(x)与1的大小;
Ⅲ.判断f(x)在R上的单调性,并证明你的结论;
Ⅳ.如果数学公式,试求f(2002)的值.

查看答案和解析>>

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(Ⅰ)如果函数y=x+
2b
x
(x>0)的值域为[6,+∞),求b的值;
(Ⅱ)研究函数y=x2+
c
x2
(常数c>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数y=x+
a
x
和y=x2+
a
x2
(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
n+(
1
x2
+x
n(n是正整数)在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数y=x+
a
x
(x>0)有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
b2
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+
a
x
和y=x2+
a
x2
(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数,
(1)如果函数y=x+
3m
x
(x>0)
的值域是[6,+∞),求实数m的值;
(2)研究函数f(x)=x2+
a
x2
(常数a>0)在定义域内的单调性,并说明理由;
(3)若把函数f(x)=x2+
a
x2
(常数a>0)在[1,2]上的最小值记为g(a),求g(a)的表达式.

查看答案和解析>>

已知函数y=x+数学公式(x>0)有如下性质:如果常数a>0,那么该函数在(0,数学公式]上是减函数,在[数学公式,+∞)上是增函数.
(1)如果函数y=x+数学公式(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+数学公式(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+数学公式和y=x2+数学公式(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=数学公式+数学公式在区间[数学公式,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>


同步练习册答案