所以不等式的解集 -- 10分 查看更多

 

题目列表(包括答案和解析)

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>


选作题,请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分,每道题满分10分)
22、选修4—1:几何证明选讲
如图,△ABC的角平分线AD的延长线交于的外按圆于点E。
(I)证明:△ABC∽△ADC
(II)若△ABC的面积为AD·AE,求∠BAC的大小。

23、选修4—4:坐标系与参数方程
已知半圆C的参数方程为参数且(0≤
P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与  的长度均为
(I)求以O为极点,轴为正半轴为极轴建立极坐标系求点M的极坐标。
(II)求直线AM的参数方程。
24、选修4—5,不等式选讲
已知函数  
(I)若不等式的解集为求a值。
(II)在(I) 条件下,若对一切实数恒成立,求实数m的取值范围。

查看答案和解析>>


选作题,请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分,每道题满分10分)
22、选修4—1:几何证明选讲
如图,△ABC的角平分线AD的延长线交于的外按圆于点E。
(I)证明:△ABC∽△ADC
(II)若△ABC的面积为AD·AE,求∠BAC的大小。

23、选修4—4:坐标系与参数方程
已知半圆C的参数方程为参数且(0≤
P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与  的长度均为
(I)求以O为极点,轴为正半轴为极轴建立极坐标系求点M的极坐标。
(II)求直线AM的参数方程。
24、选修4—5,不等式选讲
已知函数  
(I)若不等式的解集为求a值。
(II)在(I) 条件下,若对一切实数恒成立,求实数m的取值范围。

查看答案和解析>>


同步练习册答案