点P为双曲线=1上异于顶点的任意一点.F1.F2是双曲线两焦点.则△PF1F2重心轨迹方程是 A.9x2-16y2=16(y≠0) B.9x2+16y2=16(y≠0) C.9x2-16y2=1(y≠0) D.9x2+16y2=1(y≠0) 查看更多

 

题目列表(包括答案和解析)

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为4(+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D.

(Ⅰ)求椭圆和双曲线的标准方程

(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1

(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值,若不存在,请说明理由.

查看答案和解析>>

如图,A1,A为椭圆的两个顶点,F1、F2为椭圆的两个焦点.

(1)写出椭圆的方程及其准线方程.

(2)过线段OA上异于O、A的任一点K作OA的垂线,交椭圆于P,P1两点,直线A1P与AP1交于点M.

求证:点M在双曲线=1上.

查看答案和解析>>

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D.

(Ⅰ)求椭圆和双曲线的标准方程

(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1

(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?

若存在,求λ的值,若不存在,请说明理由.

查看答案和解析>>

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(Ⅰ)求椭圆和双曲线的标准方程;

(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1·k2=1;

(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案