求值 例2.设.求m的值. 解:∵. ∴.即m=9. 例3.计算:①, ②. 解:①原式 = . ②∵.. ∴原式=. 例4.P67例6 生物机体内碳14的“半衰期 为5730年.湖南长沙马王堆汉墓女尸出土时碳14的残余量约占76.7%. 试推算马王堆古墓的年代. 例5.已知x=c+b.求x. 分析:由于x作为真数.故可直接利用对数定义求解,另外.由于等式右端为两实数和的形式.b的存在使变形产生困难.故可考虑将c移到等式左端.或者将b变为对数形式. 解法一: 由对数定义可知:. 解法二: 由已知移项可得 .即. 由对数定义知: . 解法三: . . 练习:教材P68第4题 查看更多

 

题目列表(包括答案和解析)

某家电专卖店在五一期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:
奖次
一等奖
二等奖
三等奖
随机数组的特征
3个1或3个0
只有2个1或2个0
只有1个1或1个0
资金(单位:元)
5m
2m
m
 
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:
247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.
(1)在以上模拟的20组数中,随机抽取3组数,至少有1组获奖的概率;
(2)根据以上模拟试验的结果,将频率视为概率:
(ⅰ)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ⅱ)若本次活动平均每台电视的奖金不超过260元,求m的最大值.

查看答案和解析>>

某家电专卖店在五一期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:

奖次
一等奖
二等奖
三等奖
随机数组的特征
3个1或3个0
只有2个1或2个0
只有1个1或1个0
资金(单位:元)
5m
2m
m
 
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:
247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.
(1)在以上模拟的20组数中,随机抽取3组数,至少有1组获奖的概率;
(2)根据以上模拟试验的结果,将频率视为概率:
(ⅰ)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ⅱ)若本次活动平均每台电视的奖金不超过260元,求m的最大值.

查看答案和解析>>

解答题

下表为某体育训练队跳高成绩的分布,共有队员40人,成绩分为1~5五个档次,例如表中所示跳高成绩为4分,跳远成绩为2分的队员为5人.将全部队员的姓名卡混合在一起,任取一张,该卡片队员的跳高成绩为x,跳远成绩为y,设x,y为随即变量(注:没有相同姓名的队员)

(1)

求x=4的概率及x≥3且y=5的概率;

(2)

求m+n的值;若y的数学期望为,求m,n的值.

查看答案和解析>>

已知函数

(Ⅰ)若函数和函数在区间上均为增函数,求实数的取值范围;

(Ⅱ)若方程有唯一解,求实数的值.

【解析】第一问,   

当0<x<2时,,当x>2时,

要使在(a,a+1)上递增,必须

如使在(a,a+1)上递增,必须,即

由上得出,当上均为增函数

(Ⅱ)中方程有唯一解有唯一解

  (x>0)

随x变化如下表

x

-

+

极小值

由于在上,只有一个极小值,的最小值为-24-16ln2,

当m=-24-16ln2时,方程有唯一解得到结论。

(Ⅰ)解: 

当0<x<2时,,当x>2时,

要使在(a,a+1)上递增,必须

如使在(a,a+1)上递增,必须,即

由上得出,当上均为增函数  ……………6分

(Ⅱ)方程有唯一解有唯一解

  (x>0)

随x变化如下表

x

-

+

极小值

由于在上,只有一个极小值,的最小值为-24-16ln2,

当m=-24-16ln2时,方程有唯一解

 

查看答案和解析>>


同步练习册答案