因为在椭圆上. 查看更多

 

题目列表(包括答案和解析)

椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为

A、+=1   B、+=1C、+=1   D、+=1

【解析】椭圆的焦距为4,所以因为准线为,所以椭圆的焦点在轴上,且,所以,所以椭圆的方程为,选C.

 

查看答案和解析>>

椭圆的中心在原点,焦距为,一条准线为,则该椭圆的方程为

(A)                         (B)   

(C)                         (D)

【解析】椭圆的焦距为4,所以因为准线为,所以椭圆的焦点在轴上,且,所以,所以椭圆的方程为,选C.

 

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

有一海湾,海岸线为近似半个椭圆(如图),椭圆长轴端点为A,B,AB间距离为3km,椭圆焦点为C,D,CD间距离为2km,在C,D处分别有甲,乙两个油井,现准备在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙的8倍.
(1)设乙油井排出的浓度为a(a为常数)度假村P距离甲油井xkm,度假村P受到甲乙两油井的污染程度和记为f(x),求f(x)的表达式并求定义域;
(2)度假村P距离甲油井多少时,甲乙两油井对度假村的废气污染程度和最小?

查看答案和解析>>

有一海湾,海岸线为近似半个椭圆(如图),椭圆长轴端点为A,B,AB间距离为3km,椭圆焦点为C,D,CD间距离为2km,在C,D处分别有甲,乙两个油井,现准备在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙的8倍.
(1)设乙油井排出的浓度为a(a为常数)度假村P距离甲油井xkm,度假村P受到甲乙两油井的污染程度和记为f(x),求f(x)的表达式并求定义域;
(2)度假村P距离甲油井多少时,甲乙两油井对度假村的废气污染程度和最小?

查看答案和解析>>


同步练习册答案