||MA|-|MB||=|PA|-|PB|<|AB|=4.∴曲线C是以原点为中心.A.B为焦点的双曲线. 查看更多

 

题目列表(包括答案和解析)

(2004•宁波模拟)(理)已知复数z=
5
2
sin
A+B
2
+icos
A-B
2
,其中A,B,C是△ABC的内角,若|z|=
3
2
4

(1)求证:tgA•tgB=
1
9

(2)当∠C最大时,存在动点M,使|MA|,|AB|,|MB|成等差数列,求
|MC|
|AB|
的最大值.

查看答案和解析>>

已知F1(-1,0),F2(1,0),坐标平面上一点P满足:△PF1F2的周长为6,记点P的轨迹为C1.抛物线C2以F2为焦点,顶点为坐标原点O.
(Ⅰ)求C1,C2的方程;
(Ⅱ)若过F2的直线l与抛物线C2交于A,B两点,问在C1上且在直线l外是否存在一点M,使直线MA,MF2,MB的斜率依次成等差数列,若存在,请求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

(2013•宝山区一模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若p=2,求线段AF中点M的轨迹方程;
(2)若直线AB的方向向量为
n
=(1,2)
,当焦点为F(
1
2
,0)
时,求△OAB的面积;
(3)若M是抛物线C准线上的点,求证:直线MA、MF、MB的斜率成等差数列.

查看答案和解析>>

已知抛物线方程为y2=2px(p>0).
(Ⅰ)若点(2,2
2
)在抛物线上,求抛物线的焦点F的坐标和准线l的方程;
(Ⅱ)在(Ⅰ)的条件下,若过焦点F且倾斜角为60°的直线m交抛物线于A、B两点,点M在抛物线的准线l上,直线MA、MF、MB的斜率分别记为kMA、kMF、kMB,求证:kMA、kMF、kMB成等差数列.

查看答案和解析>>

已知a>b>0,m>0请将
b
a
b+m
a+m
a
b
a+m
b+m
按从大到小的顺序排列起来
b
a
b+m
a+m
a+m
b+m
a
b
b
a
b+m
a+m
a+m
b+m
a
b

查看答案和解析>>


同步练习册答案