题目列表(包括答案和解析)
设椭圆的左、右焦点分别为F1,F2,A是椭圆上的一点,AF2⊥F1F2,原点O到直线AF1的距离为.
(Ⅰ)证明;
(Ⅱ)设Q1,Q2为椭圆上的两个动点,OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,垂足为D,求点D的轨迹方程.
设椭圆的左、右焦点分别为F1,F2,A是椭圆上的一点,AF2⊥F1F2,原点O到直线AF1的距离为.
(Ⅰ)证明a=;
(Ⅱ)求t∈(0,b)使得下述命题成立:设圆x2+y2=t2上任意点M(x0,y0)处的切线交椭圆于Q1,Q2两点,则OQ1⊥OQ2.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com