集合元素的性质: ⑴ 确定性: 集合中的元素必须是确定的.例x∈A与xÏA必居其一. ⑵互异性: 集合的元素必须是互异不相同的.如: 方程 x2-2x+1=0的解集为{1}而非{1, 1} ⑶无序性: 集合中的元素是无先后顺序的. 如:{1.2}.{2.1}为同一集合. 那么{}是否为同一集合? 查看更多

 

题目列表(包括答案和解析)

集合中元素的性质:

查看答案和解析>>

某同学在研究函数y=f(x)(x≥1,x∈N)的性质,他已经正确地证明了函数f(x)满足:f(3x)=3f(x),
并且当1≤x≤3时,f(x)=[1-|x-2|],这样对任意x≥1,他都可以求f(x)的值了,比如f(3×
8
3
)=3f(
8
3
)=3[1-|
8
3
-2|]=1,f(54)=33f(
54
33
)=27,请你根据以上信息,求出集合M={x|f(x)=f(99)}中最小的元素是
 

查看答案和解析>>

若A1,A2,…,Am为集合A={1,2,…,n}(n≥2且n∈N*)的子集,且满足两个条件:
①A1∪A2∪…∪Am=A;
②对任意的{x,y}⊆A,至少存在一个i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.则称集合组A1,A2,…,Am具有性质P.
如图,作n行m列数表,定义数表中的第k行第l列的数为akl=
1(k∈Al)
0(k∉Al)

a11 a12 a1m
a21 a22 a2m
an1 an2 anm
(Ⅰ)当n=4时,判断下列两个集合组是否具有性质P,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:A1={1,3},A2={2,3},A3={4};
集合组2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)当n=7时,若集合组A1,A2,A3具有性质P,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合A1,A2,A3
(Ⅲ)当n=100时,集合组A1,A2,…,At是具有性质P且所含集合个数最小的集合组,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的个数)

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1”.
(Ⅰ)判断函数f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并说明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

已知集合A={1,2,3,…,2n}(n∈N*).对于A的一个子集S,若存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m,则称S具有性质P.
(Ⅰ)当n=10时,试判断集合B={x∈A|x>9}和C={x∈A|x=3k-1,k∈N*}是否具有性质P?并说明理由.
(Ⅱ)若n=1000时
①若集合S具有性质P,那么集合T={2001-x|x∈S}是否一定具有性质P?并说明理由;
②若集合S具有性质P,求集合S中元素个数的最大值.

查看答案和解析>>


同步练习册答案