题目列表(包括答案和解析)
设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”
(1)判断函数是否是集合M中的元素,并说明理由;
(2)集合M中的元素具有下面的性质:若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;
(3)设是方程的实数根,求证:对于定义域中任意的,当,且时,.
设是由满足下列两个条件的函数构成的集合:①方程 有实根; ②函数的导函数满足(1)判断函数是不是集合中的元素,并说明理由;(2)若集合的元素具有以下性质:“设的定义域为,对于任意都存在使得等式成立.”试用这一性质证明:方程只有一个实数根;(3设是方程的实根,求证:对函数定义域中任意,,当,且时, .
①方程f(x)-x=0有实数根;②函数f(x)的导函数f′(x)满足0<f′(x)<1.
(1)判断函数f(x)=x+sinx是否是集合M中的元素,并说明理由;
(2)集合M中的元素f(x)具有下列性质:
若f(x)的定义域为I,则对于任意[m,n]I都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立.
请利用这一性质证明:方程f(x)-x=0有唯一的实数根;
(3)若存在实数x1,使得M中元素f(x)定义域中的任意实数a、b都有|a-x1|<1和|b-x1|<1成立,证明:|f(b)-f(a)|<2.
①方程f(x)-x=0有实数根;②函数f(x)的导函数f′(x)满足0<f′(x)<1.
(1)判断函数f(x)=x+sinx是否是集合M中的元素,并说明理由;
(2)集合M中的元素f(x)具有下列性质:
若f(x)的定义域为I,则对于任意[m,n]I都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立.
请利用这一性质证明:方程f(x)-x=0有唯一的实数根;
(3)若存在实数x1,使得m中元素f(x)定义域中的任意实数a、b都有|a-x1|<1和|b-x1|<1成立.证明:|f(b)-f(a)|<2
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com