1.函数的最值的定义:函数y=f(y).定义域为A.若存在y0∈A.使得对任意的y∈A.恒有成立.则称为函数的最小(大)值. 查看更多

 

题目列表(包括答案和解析)

函数y=f(x)是定义在a,b上的增函数,其中a,b∈R且0<b<-a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(-x),则对于F(x)有以下四个说法:
①定义域是[-b,b];②是偶函数;③最小值是0;④在定义域内单调递增.
其中正确的有
①②
①②
(填入你认为正确的所有序号)

查看答案和解析>>

函数y=f(x),是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(-x),对于F(x)有如下四个说法:①定义域是[-b,b];②是偶函数;③最小值是0;④在定义域内单调递增;其中正确说法的个数有(  )

查看答案和解析>>

函数y=f(x)是定义在a,b上的增函数,其中a,b∈R且0<b<-a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(-x),则对于F(x)有以下四个说法:
①定义域是[-b,b];②是偶函数;③最小值是0;④在定义域内单调递增.
其中正确的有    (填入你认为正确的所有序号)

查看答案和解析>>

函数y=f(x),是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(-x),对于F(x)有如下四个说法:①定义域是[-b,b];②是偶函数;③最小值是0;④在定义域内单调递增;其中正确说法的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

函数y=f(x),是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(-x),对于F(x)有如下四个说法:①定义域是[-b,b];②是偶函数;③最小值是0;④在定义域内单调递增;其中正确说法的个数有( )
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>


同步练习册答案