21. 如图8.在中.分别为边的中点.连接. (1)求证:. (2)若.则四边形是什么特殊四边形?请证明你的结论. 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)
如图,在平面直角坐标系中,直线AB:分别与x轴、y轴交于点A、B,.

(1)求b的值.
(2)动点C从A点出发以2个单位/秒的速度沿x轴的正半轴运动,动点D从B点出发以1个单位/秒的速度沿y轴的正半轴运动.运动时间为t(t>0),过A作x轴的垂线交直线CD于点P,过P作y轴的垂线交直线AB于点F,设线段BF的长为d(d>0),求d与t的函数关系式.
(3)在(2)的条件下,以点A为圆心,2为半径作⊙A,过点C作不经过第三象限的直线l与⊙A相切,切点为Q, 直线l与y轴交于点E,作QH⊥AE于H,交x轴于点G,是否存在t值,使,若存在,求出t值;若不存在,请说明理由.

查看答案和解析>>

(本题满分10分)

如图,在平面直角坐标系中,直线AB:分别与x轴、y轴交于点A、B,.

(1)求b的值.

(2)动点C从A点出发以2个单位/秒的速度沿x轴的正半轴运动,动点D从B点出发以1个单位/秒的速度沿y轴的正半轴运动.运动时间为t(t>0),过A作x轴的垂线交直线CD于点P,过P作y轴的垂线交直线AB于点F,设线段BF的长为d(d>0),求d与t的函数关系式.

(3)在(2)的条件下,以点A为圆心,2为半径作⊙A,过点C作不经过第三象限的直线l与⊙A相切,切点为Q, 直线l与y轴交于点E,作QH⊥AE于H,交x轴于点G,是否存在t值,使,若存在,求出t值;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分10分)
如图,在平面直角坐标系中,直线AB:分别与x轴、y轴交于点A、B,.

(1)求b的值.
(2)动点C从A点出发以2个单位/秒的速度沿x轴的正半轴运动,动点D从B点出发以1个单位/秒的速度沿y轴的正半轴运动.运动时间为t(t>0),过A作x轴的垂线交直线CD于点P,过P作y轴的垂线交直线AB于点F,设线段BF的长为d(d>0),求d与t的函数关系式.
(3)在(2)的条件下,以点A为圆心,2为半径作⊙A,过点C作不经过第三象限的直线l与⊙A相切,切点为Q, 直线l与y轴交于点E,作QH⊥AE于H,交x轴于点G,是否存在t值,使,若存在,求出t值;若不存在,请说明理由.

查看答案和解析>>

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
【小题1】(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?(4分)
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)
【小题2】(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

查看答案和解析>>

(本题满分10分) 下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数,

⑴若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天?

⑵框出的4个数的和可能是26吗?为什么?

 

星期日

星期一

星期二

星期三

星期四

星期五

星期六

 

 

 

   1

   2

   3

   4

   5

   6

   7

   8

   9

   10

11

   12

   13

   14

  15

  16

   17

   18

   19

   20

   21

  22

  23

   24

   25

   26

   27

   28

  29

  30

   31

 

 

 

查看答案和解析>>


同步练习册答案