题目列表(包括答案和解析)
π | 2 |
(本题满分12分) 已知函数.
(Ⅰ) 求f 1(x);
(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an;
(Ⅲ) 设bn=(32n-8),求数列{bn}的前项和Tn
(本题满分12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线不过第四象限且斜率为3,又坐标原点到切线的距离为,若x=时,y=f(x)有极值.
(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(本题满分12分) 已知数列{an}满足
(Ⅰ)求数列的前三项:a1,a2,a3;
(Ⅱ)求证:数列{}为等差数列. w.w.w.k.s.5.u.c.o.m
(Ⅲ)求数列{an}的前n项和Sn.
(本题满分12分) 已知函数
(Ⅰ)当的 单调区间;
(Ⅱ)当的取值范围。
一、选择题
1―5 CADBA 6―10 CBABD 11―12 CC
二、填空题
13.(理)(文)(―1,1) 14. 15.(理)18(文)(1,0)
16.①③
三、解答题
17.解:(1)由题意得 ………………2分
(2)由可知A、B都是锐角, …………7分
这时三角形为有一顶角为120°的等腰三角形 …………12分
18.(理)解:(1)ξ的所有可能的取值为0,1,2,3。 ………………2分
(2) ………………12分
(文)解:(1); ………………6分
(2)因为
…………10分
所以 …………12分
19.解:(1), ………………1分
依题意知, ………………3分
(2)令 …………4分
…………5分
所以,…………7分
(3)由上可知
①当恒成立,
必须且只须, …………8分
,
则 ………………9分
②当……10分
要使当
综上所述,t的取值范围是 ………………12分
20.解法一:(1)取BB1的中点D,连CD、AD,则∠ACD为所求。…………1分
(2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,连EE1,
则AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。
因为A1B1//AB,所以A1B1//平面PAB。则只需求点E1到平面PAB的距离。
作E1H⊥EP于H,则E1H⊥平面PAB,则E1H即为所求距离。 …………6分
求得 …………8分
方法二:设B1到平面PAB的距离为h,则由
得 ………………8分
(3)设平面PAB与平面PA1B1的交线为l,由(2)知,A1B1//平面PAB,
则A1B1//l,因为AB⊥面CC1E1E,则l⊥面CC1E1E,
所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分
要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。 ………………10分
在矩形CEE
解得
|