21. 已知. (1) 求的值: (2) 是否存在不小于2的正整数.使得对于任意的正整数.都能被整除? 如果存在.求出最大的值,如果不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线,是否存在实数m,使直线与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。

 

查看答案和解析>>

(本题满分12分)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线,是否存在实数m,使直线与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。

查看答案和解析>>

(本题满分12分)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线,是否存在实数m,使直线与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。

查看答案和解析>>

(本题满分12分)

已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最

小值为,离心率为

(I)求椭圆的方程;

(Ⅱ)过点(1,0)作直线两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由。

 

查看答案和解析>>

(本题满分12分)

已知在四棱锥中,底面是矩形,且平面分别是线段的中点.

(Ⅰ)证明:

(Ⅱ)判断并说明上是否存在点,使得∥平面

(Ⅲ)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>


同步练习册答案