题目列表(包括答案和解析)
(本小题满分12分)
已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(nÎN*),等差数列{bn}中,
bn>0(nÎN*)且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列。
求数列{an}、{bn}的通项公式;
(本小题满分12分)
已知单调递增的等比数列{}满足:,且是 的等差中
项.(1)求数列{an}的通项公式.
(2)若=,sn为数列的前项和,求证:sn .
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:;
(Ⅲ)设,证明:对任意的正整数n、m,均有(本小题满分12分)
(理)已知Sn是正数数列{an}的前n项和,S12,S22、……、Sn2 ……,是以3为首项,以1为公差的等差数列;数列{bn}为无穷等比数列,其前四项之和为120,第二项与第四项之和为90.
(I)求an、bn;(II)从数列{}中能否挑出唯一的无穷等比数列,使它的各项和等于.若能的话,请写出这个数列的第一项和公比?若不能的话,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com