题目列表(包括答案和解析)
(本小题满分14分)
当均为正数时,称为的“均倒数”.已知数列的各项均为正数,且其前项的“均倒数”为.
(1)求数列的通项公式;
(2)设,试比较与的大小;
(3)设函数,是否存在最大的实数,使当时,对于一切正整数,都有恒成立?
(本小题满分14分)
当均为正数时,称为的“均倒数”.已知数列的各项均为正数,且其前项的“均倒数”为.
(1)求数列的通项公式;
(2)设,试比较与的大小;
(3)设函数,是否存在最大的实数,使当时,对于一切正整数,都有恒成立?
(本小题满分14分,第Ⅰ小题5分,第Ⅱ小题4分,第Ⅲ小题5分).
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2;
(Ⅲ) 正数数列中,.求数列中的最大项.
(本小题满分14分)已知是各项均为正数的等比数列,且,
(1)求的通项公式;
(2)设,求数列的前项和。
(3)设,求数列{}的前项和最小时的值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com