20. 设是定义在上的函数.若存在.使得在上单调递增.在上单调递减.则称为上的单峰函数.为峰点.包含峰点的区间为含峰区间. 对任意的上的单峰函数.下面研究缩短其含峰区间长度的方法. (1)证明:对任意的..若.则为含峰区间,若.则为含峰区间, (2)对给定的.证明:存在.满足.使得由(1)所确定的含峰区间的长度不大于, 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)
是定义在上的函数,用分点

将区间任意划分成个小区间,如果存在一个常数,使得和式)恒成立,则称上的有界变差函数.
(1)函数上是否为有界变差函数?请说明理由;
(2)设函数上的单调递减函数,证明:上的有界变差函数;
(3)若定义在上的函数满足:存在常数,使得对于任意的 时,.证明:上的有界变差函数.

查看答案和解析>>

(本小题满分14分)
是定义在上的函数,用分点

将区间任意划分成个小区间,如果存在一个常数,使得和式)恒成立,则称上的有界变差函数.
(1)函数上是否为有界变差函数?请说明理由;
(2)设函数上的单调递减函数,证明:上的有界变差函数;
(3)若定义在上的函数满足:存在常数,使得对于任意的 时,.证明:上的有界变差函数.

查看答案和解析>>

(本小题满分14分) 设是定义在区间上的偶函数,命题上单调递减;命题,若“”为假,求实数的取值范围。

查看答案和解析>>

(本小题满分14分) 设是定义在区间上的偶函数,命题上单调递减;命题,若“”为假,求实数的取值范围。

查看答案和解析>>

.(本小题满分14分)

设函数.其中为常数.

(Ⅰ)证明:对任意的图象恒过定点;

(Ⅱ) 设,若为定义域上的增函数,求的最大值;

(Ⅲ)当时,函数是否存在极值?若存在,求出极值;若不存在,说明理由.

 

查看答案和解析>>


同步练习册答案