题目列表(包括答案和解析)
(本小题满分12分)四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形.
(I)若F为AC的中点,当点M在棱AD上移动时,是否总有BF丄CM,请说明理由.
(II)求三棱锥C_ADE的高.
(本小题满分12分)
如图,在三棱锥P-ABC中,⊿PAB是等边三角形,D,E分别为AB,PC的中点.
(Ⅰ)在BC边上是否存在一点F,使得PB∥平面DEF.
(Ⅱ)若∠PAC=∠PBC=90º,证明:AB⊥PC
(本小题满分12分) 如图,在三棱锥A-BCD中,侧面ABD、 ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形.
(1) 求证:AD^BC;
(2) 求二面角B-AC-D的大小;
(3) 在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由
(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且PA//平面BDM,
(1)求证:M为PC的中点;
(2)求证:面ADM⊥面PBC。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com