如图2.是一次函数y=bx+b与反比例函数的图象.则关于x的方程kx+b= 的解为 ( ). (A). (B). (C). (D). 查看更多

 

题目列表(包括答案和解析)

如图,二次函数y=ax2+bx(a>0)的图象与反比例函数y=
kx
图象相交于点A,B,已知点A精英家教网的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
①求实数k的值;
②求二次函数y=ax2+bx(a>0)的解析式;
③设抛物线与x轴的另一个交点为D,E点为线段OD上的动点(与O,D不能重合),过E点作EF∥OB交BD于F,连接BE,设OE的长为m,△BEF的面积为S,求S于m的函数关系式;
④在③的基础上,试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时E点的坐标;若不存在,说明理由.

查看答案和解析>>

如图,二次函数y=ax2+bx(a>0)的图象与反比例函数数学公式图象相交于点A,B,已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
①求实数k的值;
②求二次函数y=ax2+bx(a>0)的解析式;
③设抛物线与x轴的另一个交点为D,E点为线段OD上的动点(与O,D不能重合),过E点作EF∥OB交BD于F,连接BE,设OE的长为m,△BEF的面积为S,求S于m的函数关系式;
④在③的基础上,试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时E点的坐标;若不存在,说明理由.

查看答案和解析>>

如图,二次函数y=ax2+bx(a>0)的图象与反比例函数图象相交于点A,B,已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
①求实数k的值;
②求二次函数y=ax2+bx(a>0)的解析式;
③设抛物线与x轴的另一个交点为D,E点为线段OD上的动点(与O,D不能重合),过E点作EF∥OB交BD于F,连接BE,设OE的长为m,△BEF的面积为S,求S于m的函数关系式;
④在③的基础上,试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时E点的坐标;若不存在,说明理由.

查看答案和解析>>

如图,二次函数y=ax2+bx(a>0)的图象与反比例函数图象相交于点A,B,已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
①求实数k的值;
②求二次函数y=ax2+bx(a>0)的解析式;
③设抛物线与x轴的另一个交点为D,E点为线段OD上的动点(与O,D不能重合),过E点作EF∥OB交BD于F,连接BE,设OE的长为m,△BEF的面积为S,求S于m的函数关系式;
④在③的基础上,试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时E点的坐标;若不存在,说明理由.

查看答案和解析>>

如图,二次函数y=ax2+bx(a>0)的图象与反比例函数图象相交于点A,B,已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
①求实数k的值;
②求二次函数y=ax2+bx(a>0)的解析式;
③设抛物线与x轴的另一个交点为D,E点为线段OD上的动点(与O,D不能重合),过E点作EF∥OB交BD于F,连接BE,设OE的长为m,△BEF的面积为S,求S于m的函数关系式;
④在③的基础上,试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时E点的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案