题目列表(包括答案和解析)
(本小题满分14分)
已知:函数(
),
.
(1)若函数图象上的点到直线
距离的最小值为
,求
的值;
(2)关于的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数与
定义域上的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
为函数
与
的“分界线”。设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本题14分)已知为实数,函数
.
(I)若函数的图象上有与
轴平行的切线,求
的取值范围;
(II)若,
(ⅰ) 求函数的单调区间;
(ⅱ) 证明对任意的,不等式恒成立。
(本小题满分14分)
已知为函数
图象上一点,
为坐标原点.记直线
的斜率
。
(I)同学甲发现:点
从左向右运动时,
不断增大,试问:他的判断是否正确?若正确,请说明理由:若不正确,请给出你的判断。
(Ⅱ)求证:当时,
。
(III)同学乙发现:总存在正实数、
,使
.试问:他的判断是否正确?若不正确,请说
明理由:若正确,请求出
的取值范围。
(本小题满分14分)
已知为函数
图象上一点,
为坐标原点.记直线
的斜率
。
(I)同学甲发现:点从左向右运动时,
不断增大,试问:他的判断是否正确?若正确,请说明理由:若不正确,请给出你的判断。
(Ⅱ)求证:当时,
。
(III)同学乙发现:总存在正实数、
,使
.试问:他的判断是否正确?若不正确,请说明理由:若正确,请求出
的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com