23.本题满分11分. 如图10.直角梯形OABC中.OC∥AB.C(0.3).B(4.1).以BC为直径的圆交轴于E.D两点(D点在E点右方). (1)求点E,D 的坐标; (2)求过B,C,D三点的抛物线的函数关系式, (3)过B,C,D三点的抛物线上是否存在点Q.使△BDQ是以BD为直角边的直角三角形?若不存在.说明理由,若存在.求出点Q的坐标. 查看更多

 

题目列表(包括答案和解析)

(本题满分11分)如图,在梯形ABCD中,AD∥BC,BC=2AD,点F、G分别是边BC、CD的中点,连接AF、FG,过点D作DE∥FG交AF于点E。

(1)求证:△AED≌△CGF;

(2)若梯形ABCD为直角梯形,∠B=90°,判断四边形DEFG是什么特殊四边形?并证明你的结论;

(3)若梯形ABCD的面积为a(平方单位),则四边形DEFG的面积为       (平方单位)。(只写结果,不必说理)

 

查看答案和解析>>

(本题满分11分)

如图所示,⊙的直径是它的两条切线,为射线上的动点(不与重合),切⊙,交,设

(1)求的函数关系式;

(2)若⊙与⊙外切,且⊙分别与

相切于点,求为何值时⊙半径为1.

 

查看答案和解析>>

(本题满分11分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒).

1.(1)设△BPQ的面积为S,求S与t之间的函数关系式

2.(2)当线段PQ与线段AB相交于点O,且2AO=OB时,求t的值.

3.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?

4.(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分11分)
如图所示,⊙的直径是它的两条切线,为射线上的动点(不与重合),切⊙,交,设

(1)求的函数关系式;
(2)若⊙与⊙外切,且⊙分别与
相切于点,求为何值时⊙半径为1.

查看答案和解析>>

.(本题满分11分)

如图,在正方形ABCD内,已知两个动圆⊙O1与⊙Q2互相外切.且⊙O1与边AB,AD相切,⊙O2与边BC,CD相切,若正方形的边长为1,⊙O1与⊙Q2的半径分别为

1.(1)求的关系式;

2.(2)求⊙O1与⊙Q2的面积之和的最小值.

 

查看答案和解析>>


同步练习册答案