解法二:由已知,得.即. 查看更多

 

题目列表(包括答案和解析)

已知数列满足(I)求数列的通项公式;

(II)若数列,前项和为,且证明:

【解析】第一问中,利用

∴数列{}是以首项a1+1,公比为2的等比数列,即 

第二问中, 

进一步得到得    即

是等差数列.

然后结合公式求解。

解:(I)  解法二、

∴数列{}是以首项a1+1,公比为2的等比数列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差数列.

     

 

查看答案和解析>>

已知函数,数列的项满足: ,(1)试求

(2) 猜想数列的通项,并利用数学归纳法证明.

【解析】第一问中,利用递推关系,

,   

第二问中,由(1)猜想得:然后再用数学归纳法分为两步骤证明即可。

解: (1) ,

,    …………….7分

(2)由(1)猜想得:

(数学归纳法证明)i) ,  ,命题成立

ii) 假设时,成立

时,

                              

综合i),ii) : 成立

 

查看答案和解析>>

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>

已知四棱锥的底面为直角梯形,底面,且的中点。

(1)证明:面

(2)求所成的角;

(3)求面与面所成二面角的余弦值.

【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.

(2)建立空间直角坐标系,写出向量的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.

(3)分别求出平面的法向量和面的一个法向量,然后求出两法向量的夹角即可.

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>


同步练习册答案