题目列表(包括答案和解析)
如图,在三棱柱中,侧面,为棱上异于的一点,,已知,求:
(Ⅰ)异面直线与的距离;
(Ⅱ)二面角的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,、分别为Y,Z轴建立空间直角坐标系.由于,
在三棱柱中有
,
设
又侧面,故. 因此是异面直线的公垂线,则,故异面直线的距离为1.
(II)由已知有故二面角的平面角的大小为向量与的夹角.
平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使我们想到可以用向量作为解析几何的研究工具.如图,设直线
l的倾斜角为α(α≠90°).在l上任取两个不同的点,,不妨设向量的方向是向上的,那么向量的坐标是().过原点作向量,则点P的坐标是(),而且直线OP的倾斜角也是α.根据正切函数的定义得 ,这就是《数学
2》中已经得到的斜率公式.上述推导过程比《数学2》中的推导简捷.你能用向量作为工具讨论一下直线的有关问题吗?例如:(1)
过点,平行于向量的直线方程;(2)
向量(A,B)与直线的关系;(3)
设直线和的方程分别是 , ,那么,
∥,的条件各是什么?如果它们相交,如何得到它们的夹角公式?(4)
点到直线的距离公式如何推导?在中,满足,是边上的一点.
(Ⅰ)若,求向量与向量夹角的正弦值;
(Ⅱ)若,=m (m为正常数) 且是边上的三等分点.,求值;
(Ⅲ)若且求的最小值。
【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则
令=,得,又,则为所求
第二问因为,=m所以,
(1)当时,则=
(2)当时,则=
第三问中,解:设,因为,;
所以即于是得
从而
运用三角函数求解。
(Ⅰ)解:设向量与向量的夹角为,则
令=,得,又,则为所求……………2分
(Ⅱ)解:因为,=m所以,
(1)当时,则=;-2分
(2)当时,则=;--2分
(Ⅲ)解:设,因为,;
所以即于是得
从而---2分
==
=…………………………………2分
令,则,则函数,在递减,在上递增,所以从而当时,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com