题目列表(包括答案和解析)
.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.
由数字1,2,3,4组成五位数,从中任取一个.
(1)求取出的数满足条件:“对任意的正整数,至少存在另一个正整数
,且,使得”的概率;
(2)记为组成该数的相同数字的个数的最大值,求的概率分布列和数学期望.
|
|
解答题:解答应写出文字说明,证明过程或演算步骤.
设P(x1,y1),Q(x2,y2)是抛物线C:y2=2px(p>0)上相异两点,且,直线PQ与x轴相交于E.
(Ⅰ)若P,Q到x轴的距离的积为4,求p的值;
(Ⅱ)若p为已知常数,在x轴上,是否存在异于E的一点F,使得直线PF与抛物线的另一交点为R,而直线RQ与x轴相交于T,且有,若存在,求出F点的坐标(用p表示),若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com